UNIT 3: TRIGONOMETRIC IDENTITIES

MA3A5. Students will establish the identities and use them to simplify trigonometric expressions and verify equivalence statements.

LG 3-1 Simplifying \& Verifying Identities
LG 3-2 Applying Trig Identities

What is a trigonometric identity?

\square A trigonometric identity is a trigonometric equation that is valid for all values of the variables for which the expression is defined.
\square In this unit, you will be manipulating expressions to make them equal something
\square When simplifying, you won't know the answer
\square When verifying, you have the answer and your job is to manipulate one side of an equation to make it look like the other side

Reciprocal Identities

$\sin \theta=\frac{1}{\csc \theta}$	$\cos \theta=\frac{1}{\sec \theta}$	$\tan \theta=\frac{1}{\cot \theta}$
$\csc \theta=\frac{1}{\sin \theta}$	$\sec \theta=\frac{1}{\cos \theta}$	$\cot \theta=\frac{1}{\tan \theta}$

Also work with powers... $\quad \sin ^{2} \theta=\frac{1}{\csc ^{2} \theta}$

Quotient Identities

$\sin \theta \quad \sec \theta$
 $\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{\sec \theta}{\csc \theta}$

\tan

$$
\cot \theta=\frac{\cos \theta}{\sin \theta}=\frac{\csc \theta}{\sec \theta}
$$

Pythagorean Identities

$$
\cos ^{2} \theta+\sin ^{2} \theta=1 \quad \tan ^{2} \theta+1=\sec ^{2} \theta \quad \cot ^{2} \theta+1=\csc ^{2} \theta
$$

Sum and Difference Identities

$\sin (a \pm b)=\sin (a) \cos (b) \pm \sin (b) \cos (a)$

The identity above is a short hand method for writing two identities as one. When these identities are broken up, they look like:

$$
\begin{aligned}
& \sin (a+b)=\sin (a) \cos (b)+\sin (b) \cos (a) \\
& \sin (a-b)=\sin (a) \cos (b)-\sin (b) \cos (a)
\end{aligned}
$$

$\cos (a \pm b)=\cos (a) \cos (b) \mp \sin (a) \sin (b)$

The identity above is a short hand method for writing two identities as one. When these identities are broken up, they look like:

$$
\left\{\begin{array}{c}
\cos (a+b)=\cos (a) \cos (b)-\sin (a) \sin (b) \\
\cos (a-b)=\cos (a) \cos (b)+\sin (a) \sin (b)
\end{array}\right.
$$

Double-Angle Identities

$\sin (2 x)=2 \sin x \cos x$

$$
\begin{aligned}
\cos (2 x) & =\cos ^{2} x-\sin ^{2} x \\
& =2 \cos ^{2} x-1 \\
& =1-2 \sin ^{2} x
\end{aligned}
$$

